Research Summary Report
Research Summary Report of C05
Category: Research Summary Report
Jointing Principles for Combination of Concrete Elements Produced by Different Additive Manufacturing Processes [14.11.2024] Prof. Dr.-Ing. Harald Kloft Project leader, h.kloft@tu-braunschweig.de Dr.-Ing. Abtin Baghdadi Researcher, a.baghdadi@tu-braunschweig.de Dipl.-Ing. Lukas Ledderose Researcher, l.ledderose@tu-braunschweig.de TU Braunschweig, Institute of Structural Design (ITE) Prof. Dr.-Ing. Martin Empelmann Project leader, m.empelmann@ibmb.tu-braunschweig.de TU Braunschweig, Institute of Building Materials, Concrete Construction and Fire Safety (iBMB) In the second phase of the C05 project, research will focus on advancing connection methods and robotic manufacturing techniques, such as waterjet cutting and stamping in green-state concrete, while incorporating post-tensioning and steel connectors for higher load-bearing capacity and easier assemblage of AM concrete segments. The project will explore new design …
Research Summary Report of B03
Category: Research Summary Report
Modelling and Simulation of Shotcrete 3D Printing (SC3DP) Based on a Massively Parallel Multi-Phase, Multi-Component Coupled LBM-DEM Approach [14.11.2024] Prof. Dr. rer. nat. M. Geier Project leader, geier@irmb.tu-bs.de Dr.-Ing. K. Kutscher Researcher, kutscher@irmb.tu-bs.de Prof. Dr.-Ing. habil. M. Krafczyk Project leader, kraft@irmb.tu-bs.de Dr.-Ing. H. Alihussein Researcher, hussein@irmb.tu-bs.de TU Braunschweig, Institute for Computational Modeling in Civil Engineering, IRMB (Institut für rechnergestützte Modellierung im Bauingenieurwesen) The project is currently concerned with the simulation of a moving nozzle for the injection process using I3DCP. We are particularly interested in the influence of the movement of the nozzle on the printed strand. Summary The I3DCP is a three-phase problem where the …
Research Summary Report of A03
Category: Research Summary Report
Extrusion of Near-Nozzle Mixed Concrete –Individually Graded in Density and in Rate of 3D Fibre Reinforcement [30.10.2024] Dr. Ing. Bos, Freek Project leader, freek.bos@tum.de Cheng, Shengbo Researcher, shengbo.cheng@tum.de Technical University of Munich, Chair of Concrete and Masonry Structures (Lehrstuhl für Massivbau) Extrusion-based 3D Concrete Printing (3DCP) is the most widely investigated technology for additive manufacturing (AM) in construction. Near-Nozzle Mixing (NNM) has been introduced in the 1st funding period of project A03 as a variant that can overcome several limitations of conventional 3DCP. Instead of mixing at a distance, NNM mixes the material constituents at the print head, thereby drastically reducing the transportation distance through hoses and the associated pumping pressure required. Thus, pumping-related …
Research Summary Report of C04
Category: Research Summary Report
Integrating Digital Design and Additive Manufacturing through BIM-Based Decision Support and Digital Twin Methods [04.10.2024] Borrmann, André Project leader, andre.borrmann@tum.de Slepicka, Martin Researcher,martin.slepicka@tum.de All: Technical University of Munich, Chair of Computational Modeling and Simulation Additive Manufacturing (AM) is gaining more and more interest in the construction sector as it potentially offers many advantages, such as increased geometric freedom and productivity. However, these advantages come at a cost; additional effort is required in the data preparation for AM (a higher level of detail is necessary). Project C04 aims to simplify and streamline the necessary design and control processes and to interlink digital design (i.e. BIM) with automated fabrication. For this purpose, the Fabrication Information …
Research Summary Report of A02
Category: Research Summary Report
Particle-Bed 3D Printing by Selective Cement Paste Intrusion (SPI) – Particle Surface Functionalisation, Particle Synthesis and Integration of WAAM Reinforcement [27.09.2024] Hamilton, Leigh Duncan; Doctoral researcher; L.Hamilton@tu-braunschweig.de Zetzener, Harald; Leading researcher; H.Zetzener@tu-braunschweig.de Kwade, Arno; Project leader; A.Kwade@tu-braunschweig.de All: TU Braunschweig, Institute for Particle Technology To enable selective paste intrusion (SPI) for practical applications, the inclusion of reinforcement is mandatory. The focus of the first funding period was uniting SPI with wire arc additive manufacturing (WAAM) for reinforced concrete as well as functionalising and/or modifying particulate systems. During the first funding period, two main issues were identified: the need for ecological sustainable development for the combined process of SPI+WAAM and accelerated process velocities to improve the economic efficiency. Therefore, the …
Research Summary Report of A05
Category: Research Summary Report
Integration of Individualized Prefabricated Fibre Reinforcement in Additive Manufacturing with Concrete [24.09.2024] Rothe, Tom; Doctoral researcher, t.rothe@tu-braunschweig.de, TU Braunschweig, Institute of Mechanics and Adaptronics (IMA) Hühne, Christian; Project Leader, Christian.Huehne@tu-braunschweig.de, TU Braunschweig, Institute of Mechanics and Adaptronics (IMA) The individual integration of fibre reinforcement into large additively manufactured concrete components allows new design freedom and reduces concrete consumption due to reduced concrete cover. Strategies for the integration of freely formable reinforcing strands for different AM processes are being developed in project A05. A Dynamic Winding Machine is used to prepare reinforcement strands. This machine is used to consolidate and impregnate a primary fibre strand and wind a secondary yarn around it as a surface structuring. Thus, these reinforcement strands …
Research Summary Report of A06
Category: Research Summary Report
Integrated Additive Manufacturing Processes for Reinforced Shotcrete 3D Printing (SC3DP) Elements with Precise Surface Quality [09.09.2024] Wenzler, David; doctoral researcher; david.wenzler@tum.de Technical University of Munich, Institute for Machine Tools and Industrial Management Blankenhagen, Jakob; doctoral researcher; jakob.blankenhagen@tum.de Technical University of Munich, Chair of Metal Structures Summary The project A06 aims to develop a methodology for producing safe and functional structural steel elements for construction using laser powder-bed fusion (LPBF). The LPBF steel Printdur HSA® will be qualified by using and transferring methodologies from the first funding period. The prediction of fatigue behaviour based on process monitoring data and machine learning will be explored. Lattice structures will be used to tailor the stiffness of the steel elements. These complex LPBF …
Research Summary Report of A04
Category: Research Summary Report
Integrated Additive Manufacturing Processes for Reinforced Shotcrete 3D Printing (SC3DP) Elements with Precise Surface Quality [30.08.2024] David, Martin; Doctoral Researcher, m.david@tu-braunschweig.de TU Braunschweig, Institute for Machine Tools and Production Technology (IWF) Main Goal Project A04 aims to investigate cooperative Additive Manufacturing (AM) processes based on Shotcrete 3D Printing (SC3DP) for the production of material-efficient, force-optimised, reinforced, load-bearing concrete components with precise surface quality and geometrical precision. The goal is to produce large-scale concrete elements using significantly less reinforcement and concrete compared to standard concrete construction principles. Hereby, different robot guided end effectors are subject to research in a flexible and automated process chain. Currently, the following key points are researched: Development of end effectors for the processing of free-from …
Research Summary Report of A07
Category: Research Summary Report
Wire and Arc Additive Manufacturing (WAAM) of Complex Individualized Steel Components [23.08.2024] Müggenburg, Marc; Doctoral Researcher, marc.mueggenburg@tu-braunschweig.de Unglaub, Julian; Project Leader,j.unglaub@tu-braunschweig.de Institute of Steel Structures Technische Universität Braunschweig Main Goal A07 focuses on understanding the interaction between DED-Arc (alias WAAM) components and existing structures, developing load-specific strengthening solutions and designing welding strategies. The specific challenges of adaptive design and adaptive manufacturing of large-scale high-strength steel DED-Arc components will be addressed and a digital twin including data from the design and manufacturing process, surface geometry and component performance will be elaborated. Physical and virtual component tests will be carried out to gain a comprehensive knowledge on buckling behavior, the effect of imperfections, load-carrying capacity and ductility. Overall, the project …
Research Summary Report of B04
Category: Research Summary Report
Process Control and Adaptive Path Planning for Additive Manufacturing Processes Based on Industrial Robots with an Extended Degree of Freedom [09.08.2024] Ekanayaka, Virama; Doctoral researcher, v.ekanayaka@tu-braunschweig.de, TU Braunschweig, Institute of Machine Tools and Production Technology (IWF) Hürkamp, André; Project Leader, a.huerkamp@tu-braunschweig.de, TU Braunschweig, Institute of Machine Tools and Production Technology (IWF) The integration of robot-guided additive manufacturing in the construction industry increases the degree of automation and can thus lead to an increased productivity and increased component quality. In shotcrete 3D printing (SC3DP), reproducible manufacturing results and ensuring component quality are major challenges, as the properties of shotcrete depend on many different parameters (e.g. temperature, pressure, water-cement ratio, hardening accelerator). The goal of this research project is to develop …
Research Summary Report of A03
Category: Research Summary Report
Extrusion of Near-Nozzle Mixed Concrete – Individually Graded in Density and in Rate of 3D Fibre Reinforcement [03.07.2024] M.Sc. Dahlenburg, Maximilian; maximilian.dahleburg@tum.de Prof. Dr.-Ing. Fottner, Johannes; j.fottner@tum.de TUM, Chair of Materials Handling, Material Flow, Logistics Main Goal In the first funding period the feasibility of multiple Near-Nozzle-Mixing approaches (NNM) were studied by iteratively developing a working prototype: the Gradation-Ready-Extrusion-System (GRES). The latest process mixes paste and aggregates at the end-effector, eliminating the challenging long pumping distances of State-of-the-art Extrusion based 3D Concrete Printing systems (E3DCP). This solves the process- and material development conflict of having a highly workable material for pumping and the contrasting need for a highly buildable material after strand deposition. Furthermore, this process type enables …
Research Summary Report of C06
Category: Research Summary Report
Integration of Additive Manufacturing in the Construction Process [13.06.2024] Mawas, Karam; Doctoral researcher, k.mawas@tu-braunschweig.de, TU Braunschweig, Institute of Geodesy and Photogrammetry (IGP) Gerke, Markus; Project leader, m.gerke@tu-braunschweig.de, TU Braunschweig, Institute of Geodesy and Photogrammetry (IGP) Maboudi, Mehdi; Associated scientist, m.maboudi@tu-braunschweig.de, TU Braunschweig, Institute of Geodesy and Photogrammetry (IGP) Quality control plays a pivotal role in enabling the seamless integration of components into objects. To ensure adherence to a resilient process and the faithful realization of the designed model in the printed object, it is essential to implement continuous and automated data capture and process inspection. Based on the outcomes of our quality control measures, we investigated how to integrate these practices into Construction Industry 4.0. We will continue …
Research Summary Report of A01
Category: Research Summary Report
Particle-Bed 3D Printing by Selective Cement Activation (SCA) – Particle Surface Functionalisation, Particle-Bed Compaction and Reinforcement Implementation [14.06.2024] Meier, Niklas; Researcher, niklas.meier@tu-braunschweig.de Zetzener, Harald; Leading researcher, h.zetzener@tu-braunschweig.de Kwade, Arno; Project Leader, a.kwade@tu-braunschweig.de all: TU Braunschweig, Institute for particle technology The fundamental goal of project A01 is to understand material process interactions in particle-bed 3D printing by Selective Cement Activation (SCA). In SCA, a particle-bed consisting of fine aggregates and cement is applied layerwise. Inbetween the layerwise application, a liquid is applied selectively on the upper layer of the particle-bed. Thereby, a the cement hydration reaction is induced locally and the particle-bed hardens at the desired places. In the second funding period of this project, there is a focus on …
Research Summary Report of C04
Category: Research Summary Report
Integrating Digital Design and Additive Manufacturing through BIM-Based Decision Support and Digital Twin Methods [07.06.2024] Li, Chao; doctoral researcher, chao1.li@tum.de Petzold, Frank; PL, petzold@tum.de Technical University of Munich, TUM School of Engineering and Design, Chair of Architectural Informatics Project C04-WP1 aims to conceive a design decision support system (DDSS) to integrate AM technologies in the early design phase. Project C04 has formalized a ontology-based knowledge base, enabling analysis of AM for building design regarding geometric and functional conformity. The DDSS will be strengthened by implementing the case-based reasoning (CBR) method to integrate AM experts’ know-how, experience, and practical examples into the architectural design process. Summary How to capitalize multi-domain expertise in a BIM-based design workflow, and how to …
Research Summary Report of C03
Category: Research Summary Report
Integration of Passive and Active Functions in Additively Manufactured Construction Elements [29.05.2024] Auer, Thomas; PL, thomas.auer@tum.de * Briels, David; doctoral researcher, david.briels@tum.de * Nouman, Ahmad; doctoral researcher, ahmad.nouman@tum.de * * Technical University of Munich, TUM School of Engineering and Design, Chair of Building Technology and Climate Responsive Design In engineering advancements, Additive Manufacturing in Construction (AMC) represents a significant paradigm shift. To fully harness the capabilities of AMC, our project, C03, is dedicated to fundamentally transforming the design of building elements. Additive Manufacturing (AM) facilitates the creation of highly specialized components that enhance both passive and active functionalities within buildings. It includes aspects of building physics, such as heat transfer and acoustics, and building services, such as heating, cooling, …
Research Summary Report of A04
Category: Research Summary Report
Integrated Additive Manufacturing Processes for Reinforced Shotcrete 3D Printing (SC3DP) Elements with Precise Surface Quality [24.05.2024] Böhler, David1; doctoral researcher, d.boehler@ibmb.tu-bs.de Rudolph, Jennifer1; doctoral researcher, j.rudolph@ibmb.tu-bs.de Freund, Niklas1; doctoral researcher, n.freund@ibmb.tu-bs.de Lowke, Dirk2; project leader, lowke@tum.de 1TU Braunschweig, Institute of Building Materials and Concrete Construction and Fire Safety (iBMB) 2TU Munich, Department of Materials Engineering Main Goal Project A04 investigates cooperative Additive Manufacturing (AM) processes based on Shotcrete 3D Printing (SC3DP). The aim of this project is a fundamental understanding of the SC3DP technology to manufacture sustainable, multi-objective optimised, reinforced concrete components with geometrically precise surface quality and improved building physics by functional integration. Current state of research 3D concrete printing (3DCP) has the potential to significantly …
Research Summary Report of A02
Category: Research Summary Report
Particle-Bed 3D Printing by Selective Cement Paste Intrusion (SPI) – Particle Surface Functionalisation, Particle Synthesis and Integration of WAAM Reinforcement [02.05.2024] Riegger, Felix; Doctoral researcher; Felix.Riegger@iwb.tum.de Baehr, Siegfried; Head of the research group; Siegfried.Baehr@iwb.tum.de All: Technical University of Munich, Institute for Machine Tools and Industrial Management Main Goal To enable selective paste intrusion (SPI) for practical applications, the inclusion of reinforcement is mandatory. The focus of the first funding period was set on implementing reinforcements in SPI parts by using wire arc additive manufacturing (WAAM). During the first funding period, two main issues were identified: the need for increased ecological sustainability for the combined process of SPI+WAAM and accelerated process velocities to improve the economic efficiency. Therefore, the main …
Research Summary Report of B05
Category: Research Summary Report
Principles of Mobile Robotics for Additive Manufacturing in Construction [02.05.2024] Dielemans, Gido; PhD Researcher, gido.dielemans@tum.de Technical University of Munich, TT Professorship of Digital Fabrication. Main Goal InjeIn this research, we investigate the deployment of mobile robots in construction scenarios for the additive manufacturing of building components through deposition-based 3D printing techniques. Our objective is to enhance on-site precision by enabling these robots to adjust their 3D printing operations autonomously in response to their immediate environment, facilitating the in-situ fabrication of building elements. We further aim to provide scalability via the parallelisation of tasks among multiple mobile robots, thereby increasing efficiency and expanding geometric possibilities. Summary Our approach utilises a method termed “print-drive-print,” which separates navigation and manipulation routines …
Research Summary Report of A09
Category: Research Summary Report
Injection 3D Concrete Printing (I3DCP) – Material Efficient Lightweight Reinforced Concrete Structures based on Spatially Complex Strut-and-Tie Models [20.04.2024] Mai, Inka, Project leader, mai@tu-berlin.de, TU Berlin, institute of civil engineering, chair of robot assisted manufacturing of the built environment. Main Goal Injection 3D Concrete Printing (I3DCP) is a new additive manufacturing process where a fluid of material A is robotically injected into another fluid of another material B. The role of material B is to support material A such that material A maintains a stable position. In general, I3DCP can be categorized into sub-categories, whereby the following two subcategories are addressed within this project: Concrete in Suspension (CiS) where concrete is injected into a non-hardening carrier liquid and …
Research Summary Report of C06
Category: Research Summary Report
Integration of Additive Manufacturing into a Cyber-Physical Construction System [16.04.2024] Placzek, Gerrit; Doctoral researcher, g.placzek@tu-braunschweig.de, Schwerdtner, Patrick; Project Leader, patrick.schwerdtner@tu-braunschweig.de both: TU Braunschweig, IBB Main Goal The integration of additive manufacturing into construction requires an interdisciplinary approach. The different competences of the team – digital fabrication in architecture (Hack), geodesy and photogrammetry (Gerke) and construction management (Schwerdtner) – lead to research from diverse perspectives on the various scalar levels of construction to be viewed holistically: component, building and industry scale. Within Subproject C06, the goal of the first phase was to create a continuous digital and lean-based process chain from design (using BIM method) to fabrication (using AM method). Based on process models und strategic decisions, we investigated …






