Additive Manufacturing in Construction
AMC TRR 277

Project A 04

Integrated Additive Manufacturing Processes for Reinforced Shotcrete 3D Printing (SC3DP) Elements with Precise Surface Quality

The project aims to fundamentally understand the Shotcrete 3D Printing (SC3DP) technology to manufacture sustainable, multi-objective optimised, reinforced concrete components with precise surface quality and improved building physics via functional integration. It seeks to minimise the carbon footprint of 3D printed structures by exploring various material strategies, such as reducing cement content by increasing the aggregate size or replacing cement with a different binder and design methods to optimise the usage of concrete in order to decrease the overall concrete volume used. Additionally, it focuses on establishing a reliable material and process control, emphasising fresh material laws for printability and durability, real-time monitoring of concrete properties, and component build-up strategies.

Objective

  • Increase sustainability of printed materials and structures
  • Investigate material properties and process interactions
  • Investigation of the durability behaviour and development of new assessment methods for the durability of 3D printed concrete
  • Develop new reinforcement processes
  • Explore novel surface designs & surface qualities
  • Expand to on-site SC3DP

Methods

  • Evolutionary algorithms for force-flow-based designs and reinforcement layouts
  • Adaptive control algorithms for process and material monitoring
  • Experimental studies on fresh-state mechanics and rheology
  • Durability testing of printed materials
  • Combined reinforcement strategies evaluation, considering design and bond behaviour
  • End effectors development for automated reinforcement and free-form surface processing

Networking with other projects

The A04 Project is linked to many other projects on three different Layers. Firstly, the process of SC3DP serves especially the C-Projects as basis for their research as A04 provides test-specimens and data of 3D-printed concrete e.g. for milling connections in C05. Secondly, A04 cooperates with B03 and B04 to monitor the process and its parameters to make it more stable and develop simulations of the process. Lastly, the A-Projects themselves exchange process parameters and techniques for reinforcement integration methods for e.g. post processing of concrete or end effector designs.

Project leaders

Prof. Dr.-Ing. Klaus Dröder Prof. Dr.-Ing. Harald Kloft Prof. Dr.-Ing. Dirk Lowke

Contributors

Dr.-Ing. Abtin Baghdadi M. Sc. David Böhler M. Sc. Martin David M. Sc. Robin Dörrie M. Sc. Niklas Freund M. Sc. Manuel Megnet M. Sc. Anna Marie Opolka M. Sc. Jennifer Rudolph

Related Publications

Surface Processing of Shotcrete 3D Printed Concrete Elements Using a Rotating Trowel Disc–Influence of Timing on Resulting Surface Quality Automated Reinforcement Integration in Shotcrete 3D Printing Through Green State Milling Robot-Guided End Effector for an Automated Finishing of Concrete Free-Form Surfaces Durability of 3D Printed Concrete: A Comparison of Extrusion 3D Printing, Shotcrete 3D Printing and Conventional Casting Shotcrete 3D printing – effect of material‐process interaction on the global and local material density The effects of nozzle diameter and length on the resulting strand properties for shotcrete 3D printing Automated force-flow-oriented reinforcement integration for Shotcrete 3D Printing Shotcrete 3D Printing – Interaction of nozzle geometry, homogeneity and hardened concrete properties Shotcrete 3D Printing – Effect of material-process interaction on the global and local material density Combined Additive Manufacturing Techniques for Adaptive Coastline Protection Structures Force-Flow compliant robotic path planning approach for reinforced concrete elements Implementation of a surrogate model for a novel path-based finite element simulation for additive manufacturing processes in construction Bewehrungskonzepte beim 3D-Druck von Konstruktionsbeton Digital Fabrication with Cement-Based Materials: Process Classification and Case Studies Structural Design and Testing of Digitally Manufactured Concrete Structures Interlayer Reinforcement in Shotcrete-3D-Printing: The Effect of Accelerator Dosage on the Resulting Bond Behavior of Integrated Reinforcement Bars Large Particle 3D Concrete Printing – A Green and Viable Solution Integrating reinforcement in digital fabrication with concrete: A review and classification framework Automated shotcrete 3D printing – Printing interruption for extended component complexity New calculation approach for selecting and orienting the reinforcing material for robotic concrete manufacturing Injection 3D concrete printing in a carrier liquid – Underlying physics and applications to lightweight space frame structures Bewehrungskonzepte beim 3D-Druck von Konstruktionsbeton Dauerhaftigkeit – Potenzial additiver Fertigung und Performance im Vergleich zu konventioneller Fertigung Additive Fertigung im Bauwesen: 3D-Betondruck als eine Schlüsseltechnologie für die Digitalisierung der Bauwirtschaft Influence of process parameters on the interlayer bond strength of concrete elements additive manufactured by Shotcrete 3D Printing (SC3DP) Bewehrungsstrategien für den Beton-3D-Druck Studying the Bond Properties of Vertical Integrated Short Reinforcement in the Shotcrete 3D Printing Process Control of Strand Properties Produced with Shotcrete 3D Printing by Accelerator Dosage amd Process Parameters Experimental and numerical assessment of new precast concrete connections under bending loads A process classification framework for defining and describing Digital Fabrication with Concrete The Effect of Accelerator Dosage on Fresh Concrete Properties and on Interlayer Strength in Shotcrete 3D Printing Herausforderungen für einen traditionellen Werkstoff auf dem Weg in die Zukunft – Digitaler Beton. Injection 3D Concrete Printing (I3DCP): Basic Principles and Case Studies.

WordPress Lightbox