Additive Manufacturing in Construction 2nd funding period: The Opportunity for Large Impact

Integrated Additive Manufacturing Processes for Reinforced Shotcrete 3D Printing (SC3DP) Elements with Precise Surface Quality

Prof. Dr.-Ing. Harald Kloft, R. Dörrie, G. Kienbaum Prof. Dr.-Ing. Dirk Lowke, N. Freund, J. Rudolph Prof. Dr.-Ing. Klaus Dröder, M. David, A. Opolka

Institute of Structural Design, TUBS Institute of Building Materials, Concrete Construction and Fire Safety, TUBS Institute of Machine Tools and Production Technology, TUBS

Project aims of 2nd funding period

Environmental sustainability

• Reduction of carbon footprint on material, design and process level

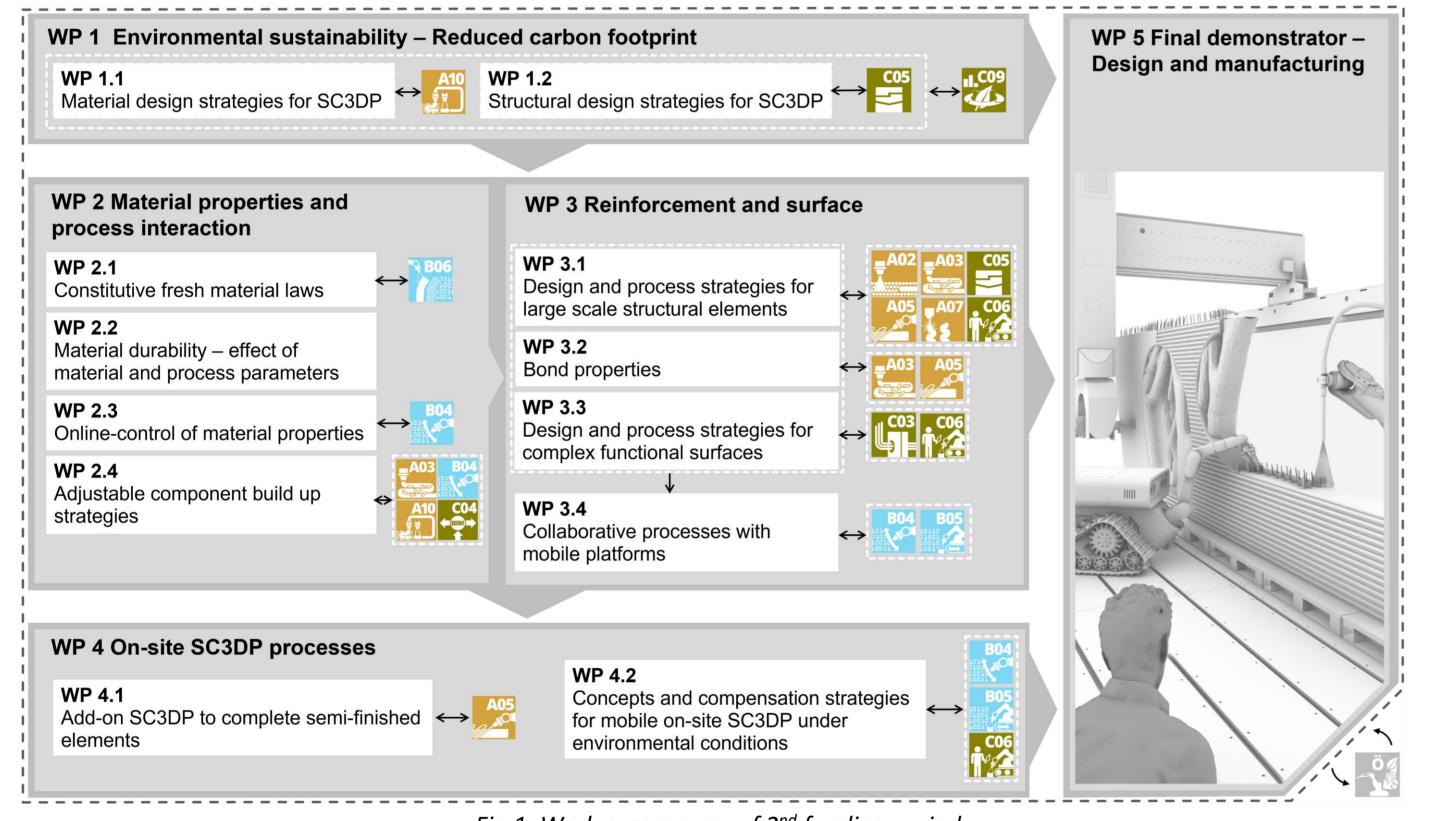
Key collaborations in 2nd funding period

Material properties and process interaction

- In-depth material characterisation in fresh and hardened state
- Online control of material parameters and extension of process control

Reinforcement and surface

- Evaluation of new concepts for continuous 3D reinforcement structures
- Methods and tools for automated surface processing expanding the usability of SC3DP to free-form geometries


On-site SC3DP processes

- Influences of environmental conditions on SC3DP
- Concepts for mobile robots for on-site processes

- Environmental sustainability (C09, A10, A03)
- Material design and process interaction (A10, B06, B04)
- Online-process control and mobile robots (B04, B05, C04)
- Reinforcement (A02, A03, A05, A07, C05)
- Surface design, functions and quality assessment (C03, C06)
- On-site processes for SC3DP (B04, B05, C06)

Work programme

Environmental sustainability

Material level

- Substitution of cement
- Increase of aggregate size

Design level

- Reduced material use
- Structural optimisation

Process level

Continuous and discrete material grading

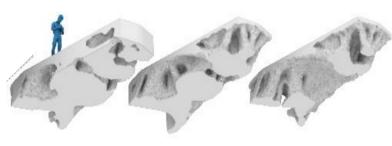
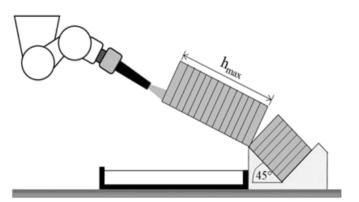

Fig 3: Reduction of CO₂ footprint on various levels

Fig 1: Work programme of 2nd funding period


Methods

- Evolutionary algorithms for force flow compliant designs and reinforcement layouts
- Process and material monitoring with adaptive control algorithms
- Experimental investigation of mechanical freshstate and rheological properties
- Experimental investigation of material durability
- Evaluation of combined reinforcement strategies based on design, component requirements and resulting bond behaviour
- Inventing end effectors for automated reinforcement integration and processing of free-formed surfaces

Evolutionary algorithms

Fresh-state mechanical testing

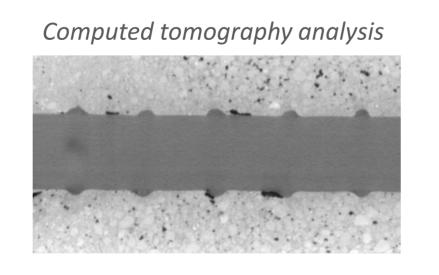
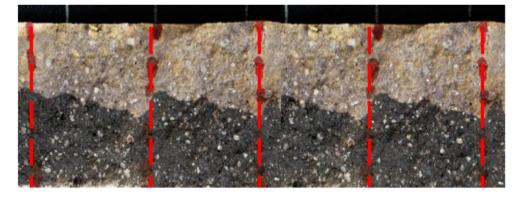



Fig 2: Selection of methods used

Material and process interaction

- Constitutive fresh material laws
- Material durability
- Online control of material properties
- Component build-up strategies
- Grading strategies for SC3DP

Fig 4: Chloride migration for SC3DP specimen, Credit: iBMB, TUBS

Reinforcement and surfaces

- Combination of reinforcement strategies and anchorage systems
- Strategies for complex threedimensional reinforcement layouts
- Use of mobile robots for integration

Strategies for Reinforcement Integration							
Short Rebar Integration			Prefabricated Structures				
Screwed	Vibrated	Bond. Mortar	Rebars	WAAM	Fibres		
Interlayer Reinforcement			Cover Layer Reinforcement				
Fibres	Rebars	Meshes	Fibres	Rebars	Meshes		
Incremental Stud Welding Clamping WAAM							

Fig 5: Evaluation matrix for reinforcement integration

Tab 1: Evaluation matrix for surface processing

Design and Manufacturing Strategies for Surfaces	

	Post-processed			
As printed	Without coverlayer	With coverlayer		
Precision based on printing precision Reinforcement integration during printing	 Subsequent modification of surface Functionalisation through texture modification Reinforcement integration during printing 	 Subsequent modification of surface Functionalisation through texture modification Material-based functionalisation 		

- Strategies for free-form geometries regarding path planning and tools
- Three stage approach to improve surface quality and geometrical

within 2nd funding period

in 2nd funding period

Outlook 3rd funding period

- Use of local and recycled materials in SC3DP
- Constitutive material laws and durability
- Fully mobile SC3DP processes
- Combined automated SC3DP assembly strategies
- SC3DP for full-scale infrastructure
- Transfer of knowledge to industrial scale

On-site SC3DP

- Mobile robotic SC3DP
- Environmental
- influences
- Compensating strategies
- Add-on SC3DP

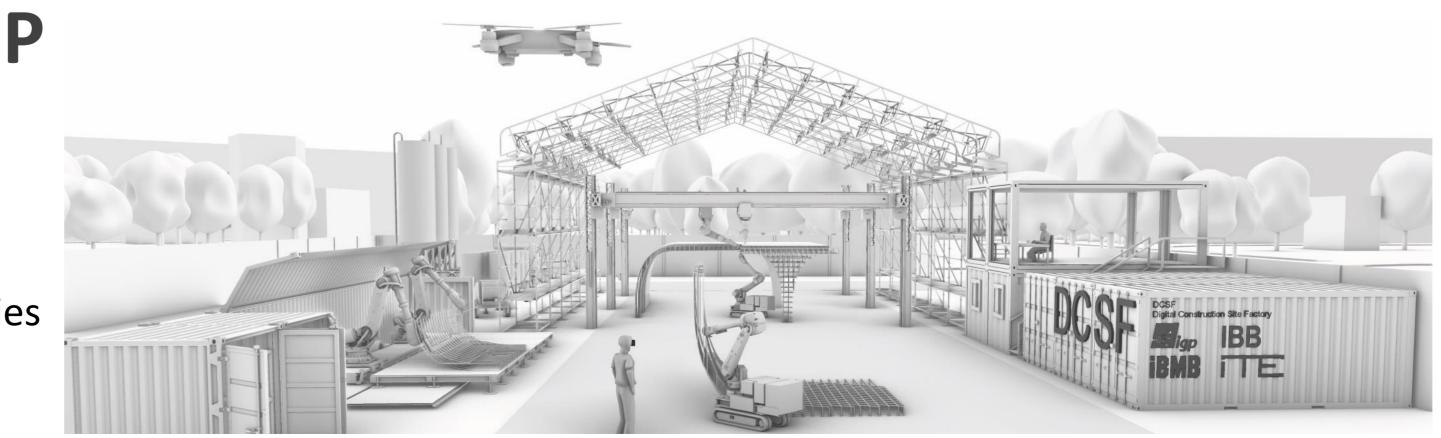


Fig 6: Mobile setup for an on-site SC3DP process, Source: Kloft et al. (2022)

Funded by

