Additive Manufacturing in Construction 2nd funding period: The Opportunity for Large Impact

3D structural puzzle – Numerical Multi Scale Shape and Topology Optimisation Methods to Additively Manufacture Optimal Structures from Optimised Pieces

Prof. Dr. Pierluigi D'Acunto Prof. Dr.-Ing. habil. Roland Wüchner

Professorship of Structural Design, TUM Institute of Structural Analysis, TUBS

Project aims of 2nd funding period

Formalisation of a Holistic Design Framework (HDF) based on:

Key collaborations in 2nd funding period

- **Multi-fidelity**: bi-directional coupling of Discrete Optimisation Approach (DOA) and Continuum-based Optimisation Approach (COA).
- **Multi-scale**: concurrent design of optimal structural forms (global scale) and segmentation into structural components (local scale).
- **Multi-material**: adaptability to different material models and opportunity for material grading.
- Integration of specific **AM-process-related** constraints and objectives.
- Development of dedicated **interfaces to other AEC disciplines** (building physics, building informatics, construction management, life-cycle assessment).
- A01 adapt HDF to SCA
- A02 adapt HDF to SPI
- A06 adapt HDF to LPBF
- A07 adapt HDF to WAAM C05 I
- A09 adapt HDF to I3DCP
- B05 adapt HDF to MCE
- CO1 integrate advanced structural analysis
- CO3 integrate building physics
- CO4 interface to BIM
- AM C05 refine joints of structural pieces
 - C06 integrate construction sequence
 - CO9 integrate LCA

Work Programme

WP 1 Formulation of th Holistic Design Framework (multi-fidelity, multi-scale, and multi-material approach)

WP 1.1: Extension of existing methods of Discrete Optimisation Approach (DOA)

WP 1.2: Extension of existing methods of Continuum-based Optimisation Approach (COA)

WP 1.3: Integration of DOA and COA into the HDF

WP 1.4: Segmentation in structural pieces (3D puzzle)

WP 2 Integration of AM constraints and objectives

WP 3

Methods

The HDF used in this project will combine the low-fidelity Discrete Optimisation Approach (DOA) and the high-fidelity Continuum-based Optimisation Approach (COA):

- The DOA for structural form-finding is based on Vector-based Graphic Statics (VGS) and Combinatorial Equilibrium Modelling (CEM).
- The DOA operates on discrete equilibrium-based models subject to only tensile and compressive axial forces.
- The COA is built on finite element discretisation of solid structural geometries with a node-based parametrization for structural optimisation.

 Vertex Morphing (VM) in combination with complex FEM allows for the extension of the approach to arbitrary design variables.

Workflow 1. Global Geometry 4. Final Structural Design 2. Segmentation Input: FE shell model Input: geometry definition Structural analysis incl. segmentation, Global form-finding Principal stress lines post-tensioning, and material (CEM) properties Out-/input: FE shell model Out-/input: wireframe model incl. principal stress lines Final design Shell model Segmentation Out-/input: Output: segmented FE shell model E shell mode Out-/input: shell model incl. details 3. Detailing 🔺 Thickness optimisation Support and

post-tensioning details

Outlook 3rd funding period

The goal for the 3rd funding period is to advance further the methods and tools formulated in the 2nd funding period to enhance the flexibility of the HDF via:

- Formulation of a Multi-Disciplinary Design Framework (MDDF) for Additive Manufacturing in Construction,
- Inclusion of the building life-span variable in the MDDF,
- Implementation of the MDDF into the demonstrators at the architectural scale.

Funded by

Output: shell model incl. thickness information

