Additive Manufacturing in Construction 2nd funding period: The Opportunity for Large Impact

Modelling and Simulation of Concrete 3D Printing Based on a Massively Parallel Multi-Phase, Multi-Component LBM Approach

Institute for Computational Modeling in Civil Engineering (iRMB), TUBS Prof. Dr. rer. nat. Martin Geier Prof. Dr.-Ing. Manfred Krafczyk Dr.-Ing. Konstantin Kutscher

Project aims of 2nd funding period

Selective Cement Activation (SCA) simulation

• Develop a methodology to simulate the penetration of water into the SCA particle bed matrix considering the presence of the aggregate phase: The effective resolution and the resulting bond quality between successive layers are highly dependent on the penetration dynamics of water into the particle bed. Unfilled pores are expected to have a negative impact on the mechanical properties of the printed structure.

Key collaborations in 2nd funding period

Injection 3D Concrete Printing (I3DCP) simulation

- Identify sensitivities of the printing quality on the process parameters: A particular focus will be on the quality of joints. To enable such simulations the prescribed movement of the printing head based on the printing commands must be included in the simulation framework.
- A01: SCA simulation permeability and water distribution of the cement matrix
- A09: I3DCP simulation
 - single strand, multi-strand and joint benchmarks
- C01: I3DCP shape prediction mechanical properties of the as-predicted printed structure

Methods

Homogenized infiltration model for SCA (WP 1)

- Homogenized Navier-Stokes equation for unresolved cement powder matrix
- Resolved aggregate phase \bullet
- Conservative phase field equation with effective \bullet interface width, mobility and contact angle

Work programme

Infiltration simulations (WP 2)

Outcome: hydration distribution \bullet

Single strand

phase field equation		interaction
WP 2		WP 4
Infiltration simulations		I3DCP benchmarks
WP 2.1 Single layer infiltration	A01	WP 4.1 Single strand benchr
WP 2.2 Multi-layer infiltration		WP 4.2 Multiple strand ben
		WP 4.3 Joint benchmark
		WP 5
		Sensitivity analysis

.

I3DCP model (WP 3)

I3DCP benchmark (WP 4)

Sensitivity analysis (WP 5)

- Suspension: Bingham fluid
- Concrete: Flocculation model
- Print-head: FSI

 $v_{concrete}$

- Outcome:
 - deformation
 - bond quality
- Outcome:
- Joint quality depending on process parameters

Multi strand Joint

Outlook 3rd funding period

- Simulation of concrete in concrete printing
- Part-scale simulation for
 - optimal path planning
- Consideration of environmental factors on the printing process

