Additive Manufacturing in Construction 1st funding period: The Challenge of Large Scale

Wire Arc Additive Manufacturing (WAAM) of High Strength and Individualized Steel Components

Prof. Dr.-Ing. Jonas Hensel, Johanna Müller Prof. Dr.-Ing. Klaus Thiele, Julian Unglaub, Hendrik Jahns Prof. Dr.-Ing. Harald Kloft, Neira Babovic

Institute of Joining and Assembly (IFMT), TUC Institute of Steel Structures (IS), TUBS Institute of Structural Design (ITE), TUBS

Project summary

This project investigates the use of WAAM for steel components. The four project objectives include: investigating fabrication-related design strategies for WAAM to consider manufacturing constraints; establishing a stable WAAM process for complex components; evolving test methods to capture typical WAAM features; and adopting a digital twin approach for certifying individual WAAM components for safe use in buildings or infrastructure.

	TA			
÷	Initial	WAAM	Material	Component
	design	process	behaviour	response

Main outcome of 1st funding period

- Mechanical properties became reliable and predictable
- Manufacturing strategies for geometrical features were developed and process constraints were identified
- Effects of print features / manufacturing conditions on the surface quality and material parameters were investigated
- A material model for the simulation of WAAM-components was developed
- Variations of force-flow design method were applied to different case studies

Project status

WAAM process

Effects of process parameters (interpass temperature, energy input, active cooling) on material properties were investigated

Key collaboration in 1st funding period

A07 and A04 investigated the bond behaviour of concrete and WAAM-rebars with different surface topographies

LPBF-WAAM tensile tests (DIC/ESPI) and characterisation of interface microstructure in collaboration with A06

Simulations of as-built tensile specimens with the method of CO1

Project status

Fabrication-related design strategies

Manufacturing constraints that need to be considered in the early stage of design have been identified and valorised

to correct the dynamically changing emission coefficient

A tolerance range for weld bead distances was identified, in which no lack of fusion occurred

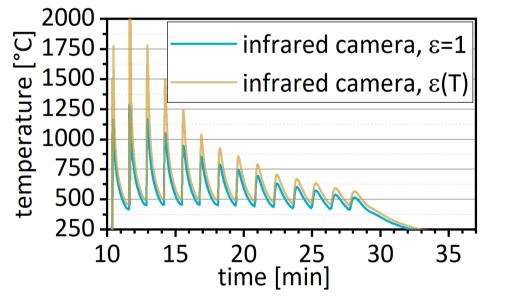
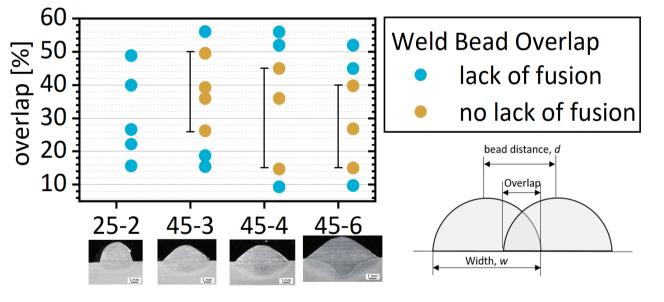



Fig 2: t-T profile with constant ε (blue) and temperature dependant ε (yellow)

Material behaviour

Effects of occurring print features on the material parameters of machined specimens were investigated

IPT: 200°C

0 2 4 6 8 10 12 14 16

Fig 1: Stress-strain curves and microstructures for

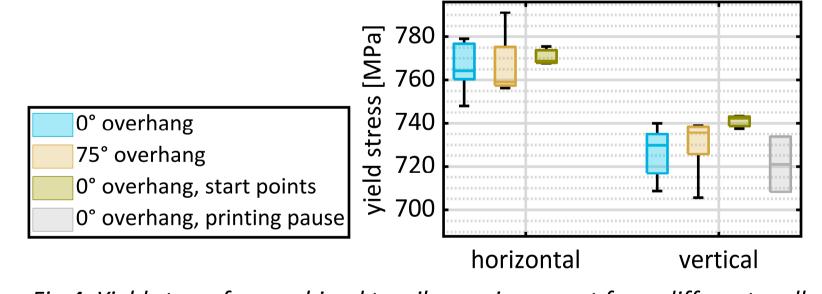
strain 1%1

different interpass temperatures

1000

800

600


400

200

[MPa]

— IPT: 400°C

Fig 3: Tolerance ranges for weld bead distances for different process parameters

Fig 4: Yield stress for machined tensile specimens cut from different walls

Influence of the manufacturing positions on the surface quality and their mechanical performance was identified

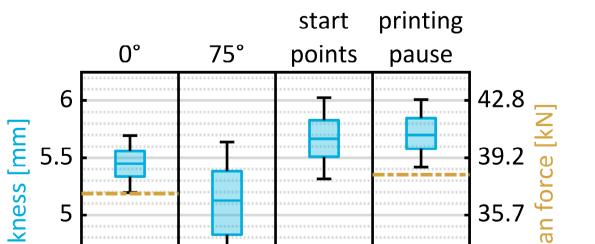


Fig 8: Occurring geometric features after optimising the initial design

	3-DoF	6-DoF	6-DoF + tilt-turn table
	x x		C BB Y
α	α < 18°	α < 18°	 α < 18°
β	β < 25°	β < 75°	β > 90°
- V	γ < 50° (2*β)	γ < 120° (collision of torch)	γ < 120° (collision of torch)
δ	δ > 34°	δ > 34°	δ > 34°
β	ε > 19°	ε > 19°	ε > 19°

Differences in design between WAAM bars, \bullet shells and volumes are distinguished and use of lattice for concrete reinforcement is discussed

Component response and DT

- Buckling tests on imperfect \bullet tubes were simulated and performed
- A class structure and

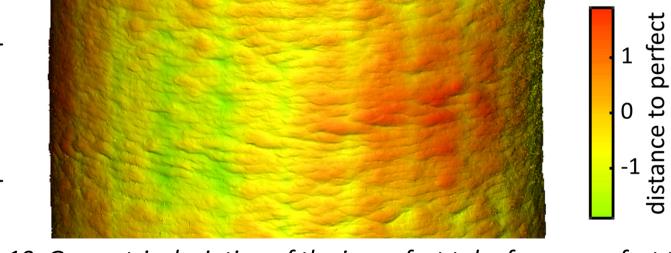


Fig 10: Geometric deviation of the imperfect tube from a perfect tube

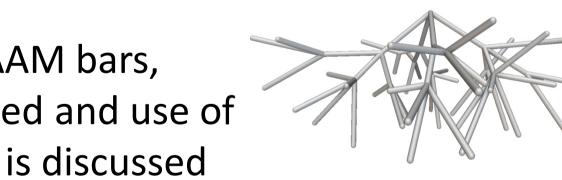
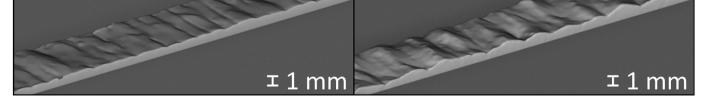



Fig 9: Anchorage structure

10 cm

Fig 5: Surface topology of walls with different overhang angles

Numerical material models for the simulation of as-built WAAM-components were developed –0° overhang

thic 4.5 32.1 28.5

Fig 6: Thickness of walls and median force of asbuilt specimens from different walls

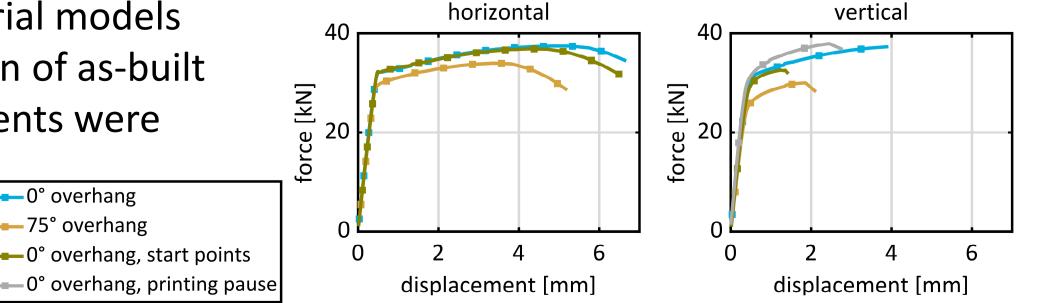
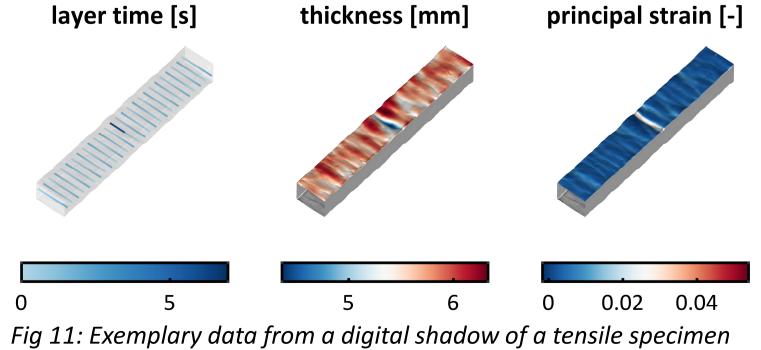



Fig 7: Force-displacement curve for as-built tensile specimens cut from different walls

methods to connect and store design, process, and testing data was created

Large scale demonstrator

• Initial geometry for the topology optimisation was chosen to demonstrate the general manufacturability of a Y-Node

Funded by

German Research Foundation

