Additive Manufacturing in Construction 2nd funding period: The Opportunity for Large Impact

Laser Powder Bed Fusion (LPBF) of Steel Elements for **Construction – Basics of Design and Mechanical Resilience**

Prof. Dr.-Ing. M. F. Zaeh, S. Baehr, D. L. Wenzler Dr.-Ing. C. Radlbeck, J. Diller, D. Siebert

Institute for Machine Tools and Industrial Management (iwb), TUM Chair of Metal Structures (MB), TUM

Project aims of 2nd funding period

Applying an additional material providing a higher yield strength than 316L while maintaining a high elongation at fracture

Key collaborations in 2nd funding period

- Increased reliability through fatigue life prediction
- Tailored part properties by including lattice structures
- Recommendations for a processing route that guarantees reliable mechanical properties and a low ecologic impact

Fig 1: Vision; section view of a shape-optimised steel node with tailored part properties, source CO1

- A07 Exchange on testing of large-scale metal structures
- C01 Development of a digital qualification method to predict fatigue life of steel parts manufactured by LPBF
- CO2 Investigation of the multi-scale optimisation of civil engineering structures
- CO9 Evaluation of the ecologic impacts of LPBF processing steps

Work programme

WP 1 Transfer to a new material	WP 1.1 Process parameters and static mechanical testing		WP 5 Sustainability	
	WP 1.2 Material characterisation and fatigue testing		esting	WP 5.1 Data collect
WP 2 Eatique life predicti	a h	WP 3 Stool connections	WP 4	

Methods – WP 3 to WP 5

Tailored part properties

- Inclusion of tailored lattice structures in LPBF parts
- Homogenised static material property model
- Integration into the design \bullet optimisation

Joints and connections

Fig 5 : Lattice structure cells with

different design parameters

<u>0.5 mm</u>

Fig 2 : Project flow chart, WP: work package

route; v: =scanning velocity, t: layer thickness, h: hatch distance, P: laser power

Fig 6 : Fusion zone of 316L manufactured by LPBF and Wire Arc Additive Manufacturing (WAAM)

Environmental sustainability

ties into design optimisation

and global structures

- Collecting comprehensive data for a life-cycle assessment \bullet
- Evaluation of the ecologic impacts of the LPBF processing steps

Methods – WP 1 and WP 2

Transfer to a new material

• Static and dynamic material characterisation of a new manganese steel with higher strength and elongation at fracture than 316L Testing the transferability of results from the 1st funding period to \bullet the new material

WP 5.2

Procedure for

the ecologic

the evaluation of

impacts of LPBF

processing steps

Data collection

Outlook 3rd funding period

Further tailoring of LPBF parts to optimise the damping ulletbehaviour

Providing a processing route for the new material

- In-situ detection of pore formation during the manufacturing
- Methodology to obtain stress intensity factors for pores detected by process monitoring
- Calibration with mechanical simulations of µCT-scanned parts \bullet

Fig 3 : LPBF process

Fig 4 : Pore detection by optical tomography

- Process combination with directed energy deposition processes to increase the maximum scale of the manufactured parts
- Include environmental and ecological sustainability \bullet considerations (Life-Cycle Cost Analysis) in the digital design workflow of LPBF construction elements

