News
Research Summary Report of C03
Category: Research Summary Report
Integration of Passive and Active Functions in Additively Manufactured Construction Elements [25.08.2023] Auer, Thomas; PL, thomas.auer@tum.de * Briels, David; doctoral researcher, david.briels@tum.de * Nouman, Ahmad; doctoral researcher, ahmad.nouman@tum.de * all: Technical University of Munich, TUM School of Engineering and Design, Chair of Building Technology and Climate Responsive Design Main goal To fully leverage the potential of additive manufacturing (AM) processes explored within the AMC, a fundamental shift in the design of building elements is necessary. Through the capabilities of AM, we can create highly specialized components that seamlessly integrate and enhance both passive and active functions, encompassing building physics (such as heat transfer and acoustics) and building services (including heating, cooling, and ventilation). Our overarching goal is to achieve …
Research Summary Report of C06
Category: Research Summary Report
Integration of Additive Manufacturing in the Construction Process [18.08.2023] Mawas, Karam; Doctoral researcher, k.mawas@tu-braunschweig.de Gerke, Markus; Project leader, m.gerke@tu-braunschweig.de Maboudi, Mehdi; Associated scientist, m.maboudi@tu-braunschweig.de all: TU Braunschweig, Institute of Geodesy and Photogrammetry (IGP) Main goal To guarantee adherence to a resilient process and faithful realization of the designed model in the printed object, it is essential to implement ongoing and automated data capture and process inspection. Additionally, quality control plays a pivotal role in enabling the seamless integration of components into objects. Summary An essential phase within 3D printing is quality assurance. Incorporating automated quality control into the production cycle can significantly augment productivity. With the rapid construction capabilities offered by 3D concrete printing (3DCP), upholding stringent quality standards …
Research Summary Report of A03
Category: Research Summary Report
Extrusion of Near-Nozzle Mixed Concrete – Individually Graded in Density and in Rate of 3D Fibre Reinforcement [06.08.2023] M.Sc. Dahlenburg, Maximilian; TP editor, maximilian.dahleburg@tum.de, TUM, Chair of Materials Handling, Material Flow, Logistics Prof. Dr.-Ing. Fottner, Johannes; Project leader, j.fottner@tum.de, TUM, Chair of Materials Handling, Material Flow, Logistics Main Goal The main goal of A03 is to establish a novel concrete extrusion process using a near nozzle mixing (NNM) process to enable the change and non-discrete gradation of material and its properties during printing. With this approach, multi-functional and multi-material parts can be printed, with an overall higher building rate due to a lower workability demand of the process and higher structuration rates of the used materials. Printed parts can thus simultaneously fulfil load-bearing …
Research Summary Report of A01
Category: Research Summary Report
Particle-bed 3D printing by selective cement activation: Particle surface functionalization, particle bed compaction and reinforcement [21.07.2023] Meier, Niklas; Researcher, niklas.meier@tu-braunschweig.de Zetzener, Harald; Leading researcher, h.zetzener@tu-braunschweig.de Kwade, Arno; Project Leader, a.kwade@tu-braunschweig.de all: TU Braunschweig, Institute for particle technology The main goal of our research in project A01 is to improve the mechanical strength and shape accuracy of the printed concrete parts as well as the printing speed. While our work at the iPAT is improving the powder properties the project partner iBMB focuses on the material-process interaction. Summary Previous research has shown, that a higher packing density of the particle bed leads to an increase in compressive strength. On the one side the process parameter during printing e.g. compaction heigt …
Research Summary Report of C04
Category: Research Summary Report
Integrating Digital Design and Additive Manufacturing through BIM-Based Decision Support and Digital Twin Methods [14.07.2023] Li, Chao; doctoral researcher, chao1.li@tum.de Petzold, Frank; PL, petzold@tum.de Technical University of Munich, TUM School of Engineering and Design, Chair of Architectural Informatics The application of Additive Manufacturing (AM) technology requires careful consideration of AM methods‘ boundary conditions. Determining suitable AM methods is critical during the early design stages since changes in design are costly when design becomes more mature. To this end, WP1 of sub-project C04 aims to develop a design decision support system (DDSS) that assists architects and engineers in choosing feasible AM methods for BIM-based design. To achieve this, a knowledge base is formalized, which consists of information on different AM …
Research Summary Report of A04
Category: Research Summary Report
Integrated Additive Manufacturing Processes for Reinforced Shotcrete 3D Printing (SC3DP) Elements with Precise Surface Quality [07.07.2023] Rudolph, Jennifer; doctoral researcher, j.rudolph@ibmb.tu-bs.de Freund, Niklas; doctoral researcher, n.freund@ibmb.tu-bs.de Lowke, Dirk; project leader, d.lowke@ibmb.tu-bs.de all: TU Braunschweig, Institute of Building Materials and Concrete Construction and Fire Safety (iBMB) Summary Project A04 investigates cooperative Additive Manufacturing (AM) processes based on Shotcrete 3D Printing (SC3DP) for the production of material-efficient, force-optimised, reinforced, load-bearing concrete components with precise surface quality and high geometric precision. The goal is to produce large-scale concrete elements using significantly lower amounts of reinforcement and concrete as compared to standard concrete construction principles. Current state of research Reinforcement integration is one of the key topics of current research in the field …
Research Summary Report of C06
Category: Research Summary Report
Integration of Additive Manufacturing in the Construction Process [16.06.2023] Placzek, Gerrit; Doctoral researcher, g.placzek@tu-braunschweig.de, TU Braunschweig, IBB The integration of additive manufacturing into construction requires an interdisciplinary approach. The different competences of the team – digital fabrication in architecture (Hack), geodesy and photogrammetry (Gerke) and construction management (Schwerdtner) – lead to research from diverse perspectives on the various scalar levels of construction to be viewed holistically: component, building and industry scale. Within Subproject C06, our goal is to create a continuous digital and lean-based process chain from design (using BIM method) to fabrication (using AM method). Based on process models und strategic decisions, we investigate construction processes and how to change them into a construction industry 4.0. Summary In …
Research Summary Report of C05
Category: Research Summary Report
Jointing Principles for Combination of Concrete Elements Produced by Different Additive Manufacturing Processes [19.05.2023] Empelmann, Martin; Project Leader, m.empelmann@ibmb.tu-bs.de Lanwer, Jan-Paul; Doctoral Researcher, j.lanwer@ibmb.tu-bs.de TU Braunschweig, Institute of Building Materials, Concrete Construction and Fire Safety (iBMB), Division of Concrete Construction The C05 project deals with the design, the manufacturing and the calculation of suitable connections for segmental AM-components. Principally, the connections should be based on the dry joint approach manufactured by subtractive post-processing. Alternatively, they could be also directly printed with the segment. The joint design should be efficient in production, apply for all AM-processes (SC3DP, Extrusion, Particle bed) and bear combined normal and shear stresses. Summary The selected joint profiles from the so-called joint catalogue (see Reference) …
Research Summary Report of A08
Category: Research Summary Report
Structural Timber by Individual Layer Fabrication (ILF) [09.06.2023] Buschmann, Birger; Doctoral researcher, birger.buschmann@tum.de, Talke, Daniel; Doctoral researcher, talke@tum.de Henke, Klaudius; Project leader, henke@tum.de Technical University of Munich, Chair of Timber Structures and Building Construction Summary The main goal of the project ‘A08 -Structural Timber by Individual Layer Fabrication (ILF)’ is to develop a process to additively manufacture large-scale, wood composite objects with a maximum content of wood material and strength values suited for applications in construction. In the course of the project multiple process variants and material combinations are explored. For this, the necessary machinery is developed in iterative steps and the mechanical properties of the resulting objects as well as the geometric capacity of the processes are investigated. Finally, …
AMC präsentiert Forschungsergebnisse / AMC presents research results
Sonderforschungsbereich AMC präsentiert Forschungsergebnisse Bei strahlendem Sonnenschein fand letzte Woche die Begutachtung des Sonderforschungsbereichs Transregio 277 Additive Manufacturing in Construction (AMC) im Forschungszentrum München/Garching statt. Mit großer Freude präsentierten wir unsere „Collaborative Demonstrators“ und stellten die Ergebnisse unserer intensiven Forschungen aus der ersten Förderperiode vor. Unser herzlicher Dank geht an die Deutsche Forschungsgemeinschaft (DFG) für die Förderung und die Unterstützung. Ebenso möchten wir unseren aufrichtigen Dank an das gesamte AMC-Team mit seinen Wissenschaftler*innen, Techniker*innen, Mitarbeiter*innen sowie Hilfskräften und natürlich auch an die Hochschulleitungen der TU Braunschweig und TU München aussprechen, die alle mit viel Engagement daran gearbeitet haben, den AMC und seine Forschungen bestmöglich zu präsentieren. Der TRR 277 AMC ist nicht nur ein Ort wegweisender Forschung, sondern vor allem …
LABDay at the Collaborative Research Centre AMC
LABDay at the Collaborative Research Centre AMC What possibilities does 3D printing offer for architecture and for the entire construction industry? What can this new technology do and how can it be used creatively? The AMC LABDay was initiated to get to the bottom of these questions with school students. In this one-day workshop, pupils learn details about the digital fabrication process from design to production. The special feature: the school students can digitally design an object themselves and this object is then printed on site by a robot. The first workshop was already a great success. The participants were able to directly participate in creative design, augmented reality, software and robotic 3D printing production. Find out more about the …
Research Summary Report of A07
Category: Research Summary Report
Wire and Arc Additive Manufacturing (WAAM) of Complex Individualized Steel Components [26.05.2023] Müller, Johanna; doctoral researcher, johanna.mueller@mb.tu-chemnitz.de TU Chemnitz, Institute of Joining and Assembly The aim of TP A07 is the design, the manufacturing and the testing of complex individualized steel components by means of WAAM. That contains the fundamental investigation of design and the design process for WAAM components. For the manufacturing of steel components by WAAM, stable and reliable processes for basic geometries are qualified and based on that, case study demonstrators for the identification of manufacturing constraints are fabricated. Furthermore, a novel approach for material and component testing is developed to identify local material and component properties. Summary The aim of WG Hensel within the …
Research Summary Report of A06
Category: Research Summary Report
Laser Powder-Bed Fusion (LPBF) of Steel Elements for Construction – Basics of Design and Mechanical Resilience. [12.05.2023] Diller, Johannes; Doctoral researcher; johannes.diller@tum.de, Siebert, Dorina; Doctoral researcher; dorina.siebert@tum.de Technical University of Munich, Chair of Metal Structures Wenzler, David; Doctoral researcher; david.wenzler@tum.de Technical University of Munich, Institute for Machine Tools and Industrial Management Summary The project A06 aims to explore and evaluate the factors influencing the manufacturing of safe and durable structural steel elements by Powder Bed Fusion of Metals using a Laser Beam (PBF-LB/M). Thereby, the PBF-LB/M process, the post-treatment, and the geometrical aspects in terms of microstructure and mechanical properties were investigated and correlations determined. In the first funding period, it is focused on analyzing small-scale specimens …
Zukunftstag beim AMC
Der dfg-geförderte Sonderforschungsbereich Additive Manufacturing in Construction blickt auf einen erfolgreichen Zukunftstag 2023 zurück. Wir haben Schülerinnen eingeladen, um sich über die Möglichkeiten und Herausforderungen des 3D-Drucks im Bauwesen zu informieren und ihnen eine praktische Einführung in diese Technologie zu geben. Es war ein aufregender Tag, an dem die Schülerinnen nicht nur die Grundlagen des 3D-Drucks kennenlernten, sondern auch unsere fortschrittlichen 3D-Drucker in Aktion erleben konnten. Wie wird Digitalisierung und 3D-Druck im Bauwesen eingesetzt? Wie gestaltet man in einem digitalen Prozesse Bauwerke? Und wie können neue Technologien dafür eingesetzt werden schneller, kosteneffizienter und nachhaltiger zu bauen. Wir waren beeindruckt von der Begeisterung und dem Engagement der Schülerinnen, die aktiv an den praktischen Workshops teilgenommen haben. Wir hoffen, dass wir ihnen …
Research Summary Report of A04
Category: Research Summary Report
Integrated Additive Manufacturing Processes for Reinforced Shotcrete 3D Printing (SC3DP) Elements with Precise Surface Quality [21.03.2023] Robin Dörrie; phd candidate, r.doerrie@tu-braunschweig.de, Technische Universität Braunschweig, Institute of Structural Design Main goal Within this project, basic research on various Shotcrete 3D Printing (SC3DP) strategies, materials, tools and methods will be conducted with regard to enhanced material and process control, reinforcement integration, surface quality and automation. To that end, different reinforcement materials in combination with suitable reinforcement manufacturing and integration concepts will be investigated based on force-flow oriented reinforcement alignment. Besides, design strategies as well as material and process control will be researched in detail. Furthermore, tools and strategies for precise control of the surface quality and geometric resolution of SC3DP elements …
3D Pioneers Challenge 2023 – Force Flow oriented Fibre Placement for AMC
3D Pioneers Challenge 2023 – Force Flow oriented Fibre Placement for AMC The AMC related process – “Force Flow oriented Fibre Placement for Additive Manufacturing in Construction” made it to the final round of the 3D Pioneers Challenge 2023! What a fanatastic achievement for our researchers Stefan Gantner, Philipp Rennen, Tom Rothe, Christian Hühne and Norman Hack. We are thrilled and incredibly excited! The project will be exhibited at Rapid.Tech3D from 09 -11 May at Messe Erfurt, Germany. Check out the 3D Pioneers Website: www.3dpc.io For more information about the project: https://amc-trr277.de/projects/project-area-a/focus-area-project-a05/ Braunschweig/München, April, 26th 2023 __________________________________________________ Contact: Meike Bährens M.A. PR & Kommunikations Koordinatorin / PR & Communication Coordinator Tel.: +49 531 391-3579 | Mobil: +49 …
Research Summary Report of B04
Category: Research Summary Report
Process Control and Adaptive Path Planning for Additive Manufacturing Processes Based on Industrial Robots with an Extended Degree of Freedom [14.04.2023] Lachmayer, Lukas; Doctoral researcher, lachmayer@match.uni-hannover.de, Leibniz Universität Hannover, Institute of Assembly Technology (match) Main goal The main objective of project B04 is to achieve repeatability in concrete-based robot-guided additive manufacturing processes, which is crucial for enhancing productivity, sustainability and safety in the construction industry. While additive manufacturing processes offer several benefits such as reduced workload, decreased material usage, and minimized manual labor, the time- and environment-dependent material properties of fresh concrete can lead to unpredictable outcomes and component collapses. By achieving stability and accuracy in these processes, we can ensure consistent and predictable results, thereby increasing minimizing the …
Research Summary Report of A03
Category: Research Summary Report
Extrusion of Near-Nozzle Mixed Concrete –Individually Graded in Density and in Rate of 3D Fibre Reinforcement [07.04.2023] Hechtl, Christian Maximilian, TP editor, m.hechtl@tum.de, TUM, Chair of Materials Science and Testing (cbm) Dr.-Ing. Kränkel, Thomas, PL, thomas.kraenkel@tum.de, TUM, cbm Prof. Dr.-Ing. Gehlen, Christoph, PL, gehlen@tum.de, TUM, cbm Main goal The goal of A03 is to establish a concrete extrusion process using a near-nozzle mixing (NNM) approach to enable a quick change of material properties during printing (gradation). This approach allows for the creation of multifunctional components, such as combined load-bearing and thermally insulating structures, by precisely altering material properties as required throughout the printing process. Summary and current state of research GRES V1 is a gradation-capable extrusion system that demonstrates …
AMC goes fair trade
The DFG-funded Collaborative Research Centre TRR 277 Additive Manufacturing in Construction (AMC) will present its innovative research with a stand and will be represented by Prof. Dr. Dirk Lowke with a presentation at BAU 2023, the leading trade fair for the construction industry. From Monday, 17th April to Saturday, 22nd April, the world’s leading trade fair BAU 2023 will open its doors and the AMC will be there. With its own stand in the “Innovation hub” Hall B0, the AMC will showcase research results achieved so far. Visitors to the trade fair will be able to get a tangible and comprehensible demonstration of the innovative power of 3D printing for the construction industry on the basis of a large number …
Research Summary Report of A02
Category: Research Summary Report
Particle-Bed 3D Printing by Selective Cement Paste Intrusion (SPI) – Particle Surface Functionalisation, Particle Synthesis and Integration of WAAM Reinforcement [24.03.2023] Straßer, Alexander, TP editor, alexander.strasser@tum.de, TUM, Chair of Materials Science and Testing Kränkel, Thomas, TP editor, thomas.kraenkel@tum.de, TUM, Chair of Materials Science and Testing Gehlen, Christoph, PL, gehlen@tum.de, TUM, Chair of Materials Science and Testing Main goal The goal of A02 is to implement reinforcement by Wire and Arc Additive Manufacturing (WAAM) in concrete elements produced by Selective Paste Intrusion (SPI), see Figure 1. Since the cement paste is applied to the aggregates and must penetrate the cavities between the aggregates by gravity, consistent rheological properties of the cement paste are essential. The welding process with WAAM generates …